
Selection guide

Nano PLCs

Applications	Small control systems governed by non-extendable PLC	C bases with maximum 24 I/O
Supply voltage	\sim 100240 V	
Discrete I/O Number of I/O	14 or 20 I/O	10, 16 or 24 I/O
Number of inputs Number of outputs	8 or 12 inputs 24 V depending on model 6 or 8 relay outputs depending on model	6, 9 or 14 inputs 24 V depending on model 4, 7 or 10 relay outputs depending on model
I/O extension		
Control system functions	Timers, up/down counters, word registers, shift bit registers, step counters, drum controllers	Real-time clocks (with 16 or 24 I/O), timers,
Analogue I/O Integrate Modules with 1 channel Analogue extension modules	1 input 010 V, ± 10 V, 4-20 mA	1 input 010 V
Counting	Fast counter (10 kHz maximum), frequency meter (10 k Up/down counter (1 kHz maximum) with 2 reflex outputs	Hz maximum)
Processing	Combinational and sequential processing Processing on bits and words Processing on bit strings, word tables and indexed word	ds
Communication	Terminal port, RS 485 ASCII link or Uni-Telway master/	slave link (depending on the model)
Language	Reversible PL7 language, Instruction List language with G	rafcet instructions and Ladder language
Programming	FTX 117 terminal (Instruction List language) PL7-07 software under DOS compatible with Windows 95	and Windows NT (Instruction List and Ladder language)
Type of PLC	TSX 07 3L 1428 TSX 07 3L 2028	TSX 07 32 1028 TSX 07 33 1628 TSX 07 33 2428
Pages	40050/12 and 40050/13	

Small control systems governed by extendable PLC bases with up to 48 I/O and up to 120 I/O when peer PLCs are used

Presentation

Nano PLCs are very compact and offer a cost-effective replacement for traditional solutions while increasing application flexibility and ease of wiring.

Nano PLCs are available in 3 formats :

- Nano PLC bases with 10, 14, 16, 20 or 24 non-extendable I/O.
- Nano PLC bases with 10, 16 or 24 extendable I/O, which can be augmented with an I/O extension and up to 3 PLC extensions.
- Nano PLC extensions with 16 or 24 I/O which can be used to augment extendable Nano PLC bases (1 extension per base).

Non-extendable Nano PLC bases

Nano PLCs with 10 I/O

Nano PLCs with 14/16 I/O

Nano PLCs with 20/24 I/O

Non-extendable Nano PLC bases will not accept any extension. They all have a \sim 100...240 V power supply, depending on the model :

- 10 I/O : 6 inputs + 4 outputs and 1 analogue input.
- 14 I/O : 8 inputs + 6 outputs.
- 16 I/O : 9 inputs + 7 outputs and 1 analogue input.
 20 I/O : 12 inputs + 8 outputs.
- 24 I/O : 14 inputs + 10 outputs and 1 analogue input.

The following types of inputs and outputs are used : $\bullet~$ Inputs : _ 24 V (sensor supply is not protected).

• Outputs : relay.

These PLCs incorporate extended communication : Uni-Telway master/slave link or ASCII link for transmission/reception.

Models with 16 and 24 I/O have a real-time clock.

Modicon

Telemecanique

Extendable Nano PLC bases

Nano PLCs with 10 I/O

Nano PLCs with 16 I/O

Nano PLCs with 24 I/O or 16 I/O (\sim inputs)

Nano PLCs, with == 24 V or \sim 100...240 V power supply, are available with three different I/O combinations :

- 10 I/O : 6 inputs + 4 outputs.
- 16 I/O : 9 inputs + 7 outputs.
- 24 I/O : 14 inputs + 10 outputs.

There are many types of I/O :

- Inputs : <u>24 V</u>, ~ 115 V, analogue 0/10 V.
- Outputs : relay outputs, transistor outputs --- 24 V/0.5 A (positive logic : load common at "-"), transistor outputs--- 24 V/0.5 A (negative logic : load common at "+").

Nano PLCs are programmed in lists of instructions using the FTX 117 programming terminal, in Ladder or Instruction list language using software on a PC compatible. Instruction list and Ladder programs are reversible on PC compatibles.

Nano PLCs are easy to set up and have numerous built in functions (EEPROM memory for storing programs, battery-backed RAM, real-time clocks for models with 16 and 24 I/O). They can be installed easily on a mounting rail or base plate, in a vertical or horizontal position.

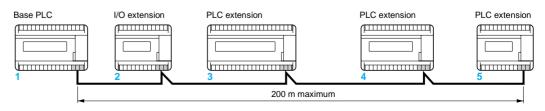
Nano PLC extensions

Nano PLC extensions with 16 I/O

Nano PLC extensions with 24 I/O

Nano PLC extensions can be used to augment extendable Nano PLCs using a single extension per base.

They all have a \sim 100...240 V or \pm 24 $\,$ V power supply and, depending on the model :


- 16 I/O : 9 inputs + 7 outputs.
- 24 I/O : 14 inputs + 10 outputs.

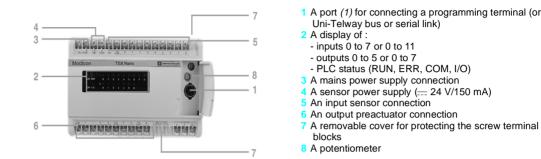
The following types of inputs and outputs are used :

- Inputs : 24 V.
- Outputs : relay outputs for models with $\sim\,$ 100...240 V power supply, transistor outputs with positive logic for models with 24 V power supply

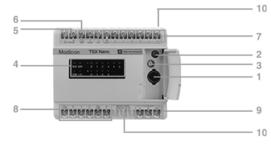
Each extendable Nano base PLC 1 can be augmented using an I/O extension 2, made up of one of the extendable Nano PLCs or a Nano extension.

In addition, up to three PLC extensions 3, 4 and 5 communicating via exchange words can be connected to the base PLC. Only the base PLC can receive an I/O extension.

This extension link can be used exclusively as a Modbus slave link.


Characteristics :	References :	Dimensions :	Connections :	
pages 40050/9 to 40050/11	pages 40050/12 to 40050/14	page 40050/15	pages 40050/16 to 40050/19	
		Modicon		

Description


Non-extendable Nano PLCs

The front panels of TSX 07 3L ••28 non-extendable Nano PLCs comprise :

Extendable Nano PLCs

The front panels of TSX 07 30 1000 extendable Nano PLCs with 10 I/O comprise :

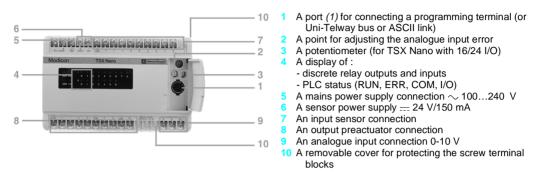
- 1 A port (1) for connecting a programming terminal (or Uni-Telway bus or serial link)
- 2 A selector switch for coding the base/extension function
 - A potentiometer
- 4 A display of :
 - inputs 0 to 5 and outputs 0 to 3 - PLC status (RUN, ERR, COM, I/O)
- A mains power supply connection
- 6 A sensor power supply (= 24 V/150 mA) on models with a \sim 100...240 V supply
- 7 An input sensor connection
- 8 An output preactuator connection
- 9 An extension connection (I/O extension and/or PLC
- extension) or Modbus slave connection
- 10 A removable cover for protecting the screw terminal blocks

The front panels of TSX 07 31 16/2400 extendable Nano PLCs with 16/24 I/O comprise :

- 1 A port (1) for connecting a programming terminal (or Uni-Telway bus or serial link)
- 2 A selector switch for coding the base/extension
- function Two potentiometers
- 4 A display of :
 - inputs 0 to 8 or 0 to 13 and outputs 0 to 6 or 0 to 9 - PLC status (RUN, ERR, COM, I/O)
- A mains power supply connection
- 6 A sensor power supply (== 24 V/150 mA) on models with a \sim 100...240 V supply
- 7 An input sensor connection
- 8 An output preactuator connection
- 9 An extension connection (I/O extension and/or PLC extension) or Modbus slave connection

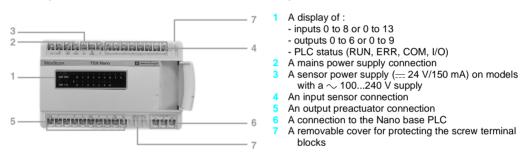
10A removable cover for protecting the screw terminal blocks

(1) Female 8-way mini-DIN type connector.

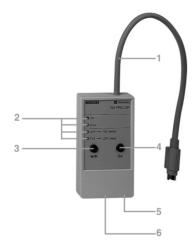


 Characteristics : pages 40050/9 to 40050/11
 References : pages 40050/12 to 40050/14
 Dimensions : page 40050/15
 Connections : pages 40050/16 to 40050/19

 40050-EN.FM/4
 Modicon
 Schneider Electric


Nano PLCs (with integrated analogue input)

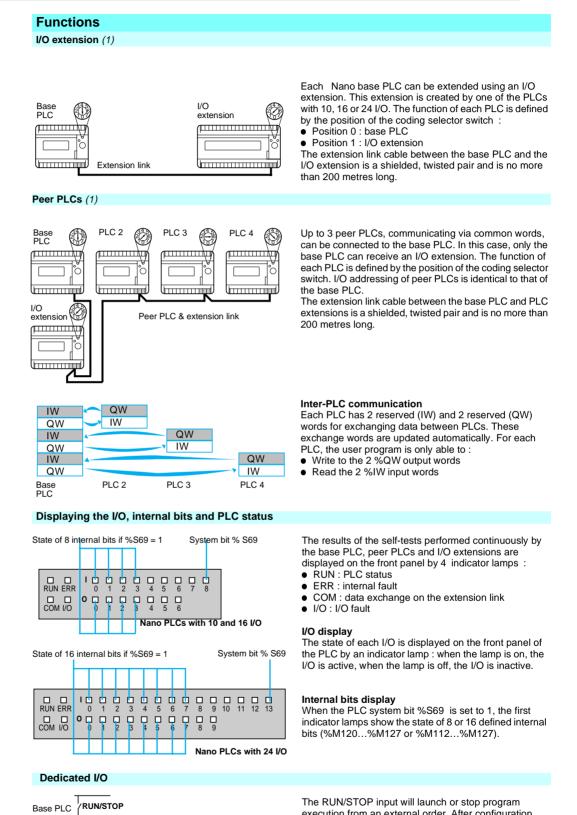
The front panels of TSX 07 32/33 ••28 Nano PLCs with 10/16/24 I/O and 1 integrated analogue input comprise :


Nano PLC extensions

The front panels of TSX 07 EX eeee Nano PLC extensions comprise :

Program loader

The TSX PGR LDR module is designed to simplify duplicating or updating applications on Nano and Micro PLCs without the need for a programming terminal. An application (in internal RAM) can be transferred from a PLC to the TSX PGR LDR module (and saved within it), then transferred from the TSX PGR LDR module to a PLC.

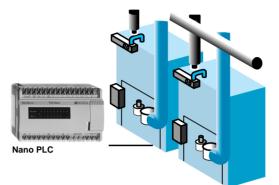


The front panel of the TSX PGR LDR module comprises :

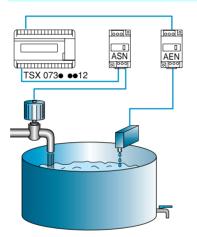
- 1 A cord for connecting to the PLC programming port
- 2 Four operation indicator lights
- 3 A W/R button which selects the program transfer direction (PLC→ module or module → PLC).
- 4 A GO button to start the transfer
- 5 A Write Only switch which prevents PLC→ module transfer
- 6 A Program Protect switch which protects the PLC application as read-only after the transfer

(1) Female 8-way mini-DIN type connector.

Characteristics :	References :	Dimensions :	Connections :	
pages 40050/9 to 40050/11	pages 40050/12 to 40050/14	page 40050/15	pages 40050/16 to 40050/19	
Schneider Electric		Modicon Telemecanique		40050-EN.FM/5


 The RUN/STOP input will launch or stop program execution from an external order. After configuration, one of the first 6 inputs (%l0.0 to %l0.5) can be assigned to this function. One of the first 4 outputs (%Q0.0 to %Q0.3) can be configured to indicate to the user that the PLC program is not running (STOP or fault).

(1) TSX 07 30/31 PLCs can no longer receive an I/O extension or peer PLC when the integrated Modbus link is in use. TSX 07 32/33 ••28 and TSX 07 3L ••28 PLCs cannot take an I/O extension or peer PLC.


Characteristics :	References :	Dimensions :	Connections :	
pages 40050/9 to 40050/11	pages 40050/12 to 40050/14	page 40050/15	pages 40050/16 to 40050/19	
		Modicon		

Telemecaníque

Real-time based programming

Analogue I/O

High-speed processing applications

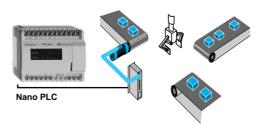
Nano PLC

Nano PLCs with 16 or 24 I/O integrate 16 user-definable real-time clocks which can be used to :

- Control the outputs directly (opening and closing electrical circuits) or act on the user program according to the time (month, day, hour and minute).
- Program time setpoints which can be modified via an operator panel or calculated by the program.
- Program event time-stamping or perform time calculations.

The Nano PLC is designed for simple process control applications (level, temperature, flow rate control, etc) with speed controller or servo-valve control.

TSX AEN/ASN modules are used with Nano PLCs to process 1 analogue input and 1 analogue output respec-tively :


- The input module, 0/10 V 10/+ 10 V or 4/20 mA is connected to the ---- 24 V input %I0.0 of the PLC and is configured in frequency meter mode.
- The output module, 0/10 V 10/+ 10 V or 4/20 mA uses the pulse width modulation transistor output %Q0.0.
 Analogue processing is also possible using three TSX 07 32/33 ●28 bases which consist of 1 analogue input 0-10 V.

On a base PLC or peer PLC, each of the first 6 inputs (%I0.0 to %I0.5) can be assigned to the latching function after configuration. This function is used to take account of input pulses with short durations, 100 µs minimum. Nano PLCs include standard functions which are easy to set up and can be used for adaptation to control systems requiring counting capacity or short response times :

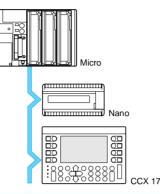
- Fast counter (maximum frequency 10 kHz)
- Fast up/down counter (maximum frequency 1 kHz)
- Frequency meter (maximum frequency 10 kHz)

Sensors which are used on the up/down counter inputs (%I0.0 and %I0.3) must have solid state outputs. 2 reflex outputs (%Q0.1 and %Q0.2) are controlled directly by the fast counter (without waiting for outputs to be updated at the end of the scan) according to a matrix predefined during configuration.

Pulse outputs

After configuration, the first output & Q0.0 (if it is a transistor output) of the Nano PLC can be used with :

- The PWM software function, as a pulse width modulation output at a predefined frequency of up to 4.9 kHz designed for use in applications with light or sound intensity control (dimmer function).
- The PULSE software function, as a pulse generator output of up to 4.9 kHz designed for use for controlling stepper motors.

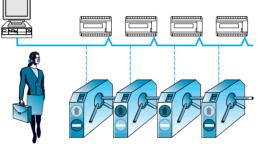

pages 40050/9 to 40050/11

pages 40050/12 to 40050/14

60/14 page 4005

connections : pages 40050/16 to 40050/19

Uni-Telway communication

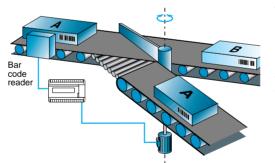

Modbus slave communication

The Nano PLC can communicate with other Uni-Telway devices via the terminal port : speed -controllers, operator terminals, compact or modular PLCs.

The ability to send and receive messages means that Nano PLCs can be integrated in distributed architectures.

In slave mode, for example, the Nano PLC can initiate communication and send updated variables to the bus master (local reflex processing).

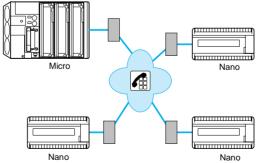
28 Nano slave PLCs can be connected to the Uni-Telway bus over a distance of 1 km (isolated for speeds of 1.2 to 9.6 K bits/s).



Nano PLCs have an RS 485 serial link extension port, supporting the Modbus protocol (depending on the model). It is used to perform the following requests :

- Read/write bits and words
- Read PLC status (via Uni-TE request)
- Set to RUN or STOP mode (via Uni-TE request)
- Initialise the PLC (via Uni-TE request)

Up to 28 Nano PLCs can be connected over a distance of 200 m for user-definable speeds of 1.2 to 19.2 K bits/s.


ASCII communication

The ability to send and receive characters enables the Nano PLC to communicate in point-to-point mode with a large number of ASCII devices, such as PCs (directly or via modem), printers, bar code readers, etc.

Frame speed and format can be configured. Connection to the Nano PLC terminal port is via an RS 232/485 converter cable powered by the PLC.

Modem application (Modbus or Uni-Telway protocol)

A PLC fitted with a Modbus or Uni-Telway master module interrogates Nano PLCs via the switched telephone net-work.

When connected to a Modem in RS 485 mode, the master can use the link to generate dialling sequences for remote sites.

Each Nano PLC responds to requests from the master, but is also able to trigger a call by activation of a discrete input on the Modem.

Target applications (with Modbus or Uni-Telway) :

- System teleprocessing
- Telemonitoring of remote sites
- Water, energy, environment control

The Uni-Telway slave link of Nano PLCs can also be used for:

- Up/down loading programs
- Programming and remote diagnostics

bages 40050/9 to 40050/11

pages 40050/12 to 40050/14

page 40050/

Connections : pages 40050/16 to 40050/19

Modicon Telemecanique **Characteristics**

Nano PLCs Nano PLCs bases

Conforming to standards IEC 1131-2, IEC 664, UL 508, UL 746 C, UL 94, CSA 22-2 no. 142, EN 50081/class B Temperature Operation °C 0+ 60 Storage °C -25+ 70 Humidity Without condensation % 595 Attitude m 02000 Vibration resistance Conforming to IEC 68-2-6 FC tests Mechanical shock resistance Conforming to IEC 68-2-27 EA tests Power supply characteristic TSX 07 30/31/32/33 eee8, TSX 07 3L ee28, TSX 07 EX ee28 TSX 07 31 eee2, TSX 07 EX ee12 Supply voltage Nominal V ~100240 == 24 Imit V 85264 19.230 Frequency Nominal Hz 50/60 – Limit Hz 4763 –							
Storage °C - 25+ 70 Humidity Without condensation % 595 Altitude m 02000 Vibration resistance Conforming to IEC 68-2-6 FC tests Mechanical shock resistance Conforming to IEC 68-2-7 EA tests Power supply characteristics Conforming to IEC 68-2-27 EA tests Type of PLC T\$X 07 30/31/32/33 eee8, T\$X 07 3L ee28, T\$X 07 2L ee28 T\$X 07 31 eee2, T\$X 07 EX ee12 Supply voltage Nominal V ~ 100240							
Storage °C - 25+ 70 Humidity Without condensation % 595 Altitude m 02000 Vibration resistance Conforming to IEC 68-2-6 FC tests Mechanical shock resistance Conforming to IEC 68-2-27 EA tests Power supply characteristics Conforming to IEC 68-2-27 EA tests Type of PLC T\$X 07 30/31/32/33 eee8, T\$X 07 3L ee28, T\$X 07 21 ee28 T\$X 07 31 eee2, T\$X 07 EX ee12 Supply voltage Nominal V ~ 100240							
Humidity Without condensation % 595 Altitude m 02000 Vibration resistance Conforming to IEC 68-2-6 FC tests Mechanical shock resistance Conforming to IEC 68-2-27 EA tests Power supply characteristics TSX 07 30/31/32/33 eee8, TSX 07 3L ee28, TSX 07 31 eee2, TSX 07 EX ee12 Type of PLC TSX 07 30/31/32/33 eee8, TSX 07 3L ee28, TSX 07 31 eee2, TSX 07 EX ee12 Supply voltage Nominal V ~ 100240							
Vibration resistance Conforming to IEC 68-2-6 FC tests Mechanical shock resistance Conforming to IEC 68-2-27 EA tests Power supply characteristics Conforming to IEC 68-2-27 EA tests Type of PLC TSX 07 30/31/32/33 eee8, TSX 07 3L ee28, TSX 07 EX ee28 TSX 07 31 eee2, TSX 07 EX ee12 Supply voltage Nominal V ~ 100240	595						
Mechanical shock resistance Conforming to IEC 68-2-27 EA tests Power supply characteristics Conforming to IEC 68-2-27 EA tests Type of PLC TSX 07 30/31/32/33 eee8, TSX 07 3L ee28, TSX 07 31 eee2, TSX 07 EX ee12 Supply voltage Nominal V ~ 100240 24 Frequency Nominal Hz 50/60	2000						
Supply voltage Nominal V ~ 100240 - 24 Frequency Nominal Hz 50/60 -							
Power supply characteristics Type of PLC TSX 07 30/31/32/33 0008, TSX 07 3L 0028, TSX 07 EX 0028 TSX 07 31 0002, TSX 07 EX 0012 Supply voltage Nominal V ~ 100240 24 Limit V 85264 19.230 Frequency Nominal Hz 50/60	Conforming to IEC 68-2-27 EA tests						
Supply voltage Nominal V ~ 100240 - 24 Limit V 85264 19.230 Frequency Nominal Hz 50/60 -							
voltage Limit V 85264 19.230 Frequency Nominal Hz 50/60 -							
Limit V 85264 19.230 Frequency Nominal Hz 50/60 -							
Limit Hz 4763 –							
Power required ≤ 30 VA ≤ 14 W							
Sensor protected power supply V 24/150 mA –							
Primary/earth isolation Vrms 2000/50-60 Hz 2000/50-60 Hz	2000/50-60 Hz						
Microbreaks Duration ms ≤10 ≤1							
Discrete input characteristics							
Type of input V = 24 (resistive) ~ 115 (capacitive)							
Nominal input Voltage V = 24 ~ 110/120							
values Current mA 7 10							
Sensor supply V = 19.230 (including ripple) –							
Limit input At state 1 Voltage V \geq 11 \geq 79							
values Current mA ≥ 2.5 for 11 V ≥ 4 for 79 V							
At state 0 Voltage V ≤ 5 ≤ 20							
Current mA ≤ 1.2 ≤ 2							
Logic Positive or negative depending on wiring –							
Filter time 12 ms, 3 ms or 100 µs (on I0.0 to I0.7)/375 µs (on I0.8 to I0.73) 12 ms							
Isolation Between goups of I/O Vrms 1500/50-60 Hz 1500/50-60 Hz 1500/50-60 Hz							
Type Optoelectronic module –							

Dimensions : page 40050/15 pages 40050/16 to 40050/19

Modicon Telemecanique

Type of output	t		Relay	Transistor, positive logic	Transistor, negative logic
Output descri	ption		1 normally open contact	Protected	Non-protected
Loads	Voltage	v	\sim 24220	<u></u> 24	<u></u> 24
nominal values)	Nominal current	А	_	0.5	0.5
	Tungsten lamp	w	_	≤ 10	≤ 10
- loads	Voltage	v	24	19.230	19.230
	Current	A	DC-12 : 1-24 V (0.3 x 10 ⁶ op. cycles) DC-13 : 0.4-24 V (1 x 10 ⁶ op. cycles)	0.625 (at 30 V) common to "-" loads	0.625 (at 30 V) common to "+ loads
\sim loads	AC-12 resistive duty	A	1-110/220 V (0.5 x 10 ⁶ op. cycles) 0.5-110/220 V (2 x 10 ⁶ op. cycles) 1-48 V (0.5 x 10 ⁶ op. cycles) 2-24 V (0.3 x 10 ⁶ op. cycles) 1-24 V (0.5 x 10 ⁶ op. cycles)	-	-
	AC-15 inductive duty	A	0.22-220 V (1 x 10 ⁶ op. cycles) 0.5-24/48/110 V (1 x 10 ⁶ op. cycles) 1-24 V (0.2 x 10 ⁶ op. cycles)	-	-
Response	State 0 to 1	ms	≤5	≤1	≤1
ime	State 1 to 0	ms	≤ 10	≤1	≤1
_eakage current	At state 0	mA	_	≤1	≤1
/oltage drop	At state 1	v	_	≤ 2 (for I = 0.5 A)	≤ 1.5 (for I = 0.5 A)
Built-in protection	Overloads and short-circuits		None (fit one fuse per I/O point or group of I/O points)	Yes	None (fit a fuse on the preactuator common)
	Overvoltages		None (fit RC or GMOV peak limiter circuit for \sim and a freewheel diode for $=$)	Yes	Yes
	Polarity inversions		_	Yes	Yes

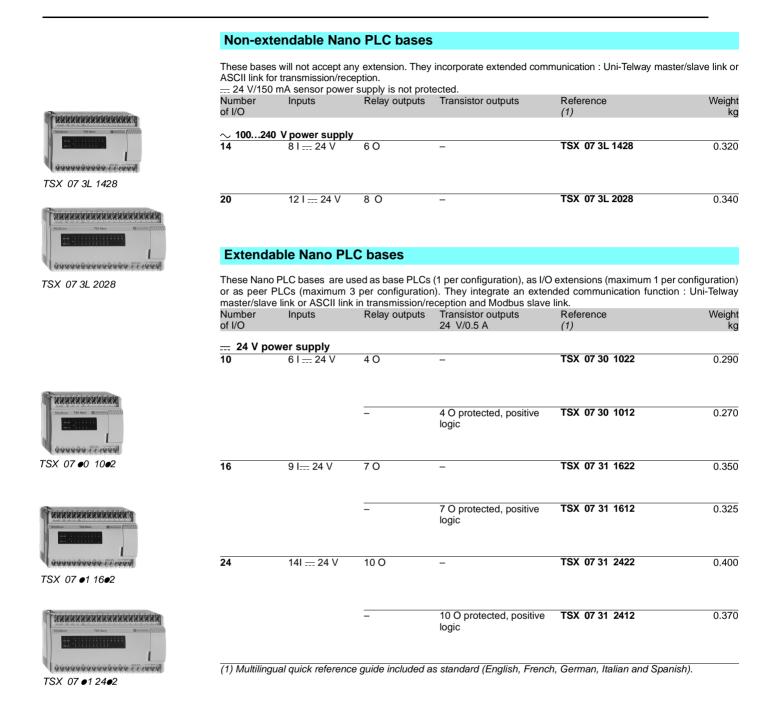
Polarity inversions – – Integrated analogue input characteristics

Type of PLC				TSX 07 32/33 ••28					
Analogue	Number of	points		1					
input	Input range	е	v	010					
	Input impe	dance	kΩ	1618					
	Max. voltage without destruction		v	± 16					
_	Type of protection			Against short-circuits					
Conversion	Method			Successive approximations					
	Resolution			8 bits					
	Conversion time			PLC scan time					
	Precision	at 25 °C	% FS	±0.8					
		at 60 °C	% FS	±2					
	Drift			0.34 % per 10 °C					
	Repeatabi	lity	٧	± 0.8 % of 0 to 60 °C (at full scale)					
Isolation	Analogue i processor	input and	v	None					
Wiring	Isolated se	ensor	m	30 max.					
distance with shielded cable	Non-isolate	ed sensor	m	10 max.					

References : pages 40050/12 to 40050/14

Dimensions : page 40050/15

pages 40050/16 to 40050/19


Type of BLC	TEV 07	30/31 ••••							
Type of PLC									
Structure	Descript	ion	Heterogeneous industrial bus						
	Physical	interface	RS 485 non-isolated						
	Method	of access	Master/slave type						
Transmission	Mode		Asynchronous in base band, RTU/ASCII frame						
	Bit rate		1.2 K bits/s to 19.2 K bits/s						
	Medium		Double shielded twisted pair						
Configuration	Number	of devices	28 devices maximum, 98 link addresses maximum						
	Bus leng	jth	200 m maximum						
	Drop cat	hle	15 m maximum						
Available Modbus/Jbus slave	Code	Description		Code	Description				
functions	01		secutive output bits	05	Writing of 1 output bit				
	02		secutive input bits	06	Writing of 1 output word				
	03		secutive output words secutive input words	15 16	Writing of n output bits Writing of n output words				
	04	Reading of h con		10	whiting of h output words				
Services	Sending	requests	Bits : 120 bits maximum per request Words : 120 words maximum per request						
	Safety		One CRC 16 check parameter on each frame						
	Monitoring			ounters					
ASCII asynchronous set	rial link c	haracteristics	3						
Type of PLC			TSX 07 30/31/32/33 ●●●●, TSX 07 3L ●●●●						
Physical layer	Terminal	l port	RS 485 non-isolated Half-duplex (10 m max)						
	Flow rate	e	1.2 K bits/s to 9.6 K bits/s						
Transmission	Туре		Point-to-point, without flux control (Xon-Xoff, RTS/CTS)						
	Data		7 or 8 bits						
	Stop bit Parity bi	t	1 or 2 bits Even, odd or no parity						
Services	120 cha	racter messages	Transmission/reception						
Uni-Telway integrated				page 4359	94/2)				
Type of PLC			TSX 07 30/31/32/33 ●●●●, TS						
Structure	Physical	interface							
	Bit rate		RS 485 terminal port Half-duplex non-isolated 1.2 to 9.6 K bits/s						
<u> </u>	Function	15	Master/slave						
Configuration	Number	of devices	Master : 3 devices maximum Slave : 28 devices maximum						
	Bus leng	jth	10 m max, 1000 m when usin	g the TSX	P ACC 01 terminal port cable connector				
Services	Uni-TE s	server	Writing or reading Nano mast device	er data afte	er a request is sent by a connected client				
			Reception of messages from maximum	all devices	on the bus (master or slave), 128 bytes				
	Uni-TE o (master	client function)	Sending requests (128 bytes	maximum)	to all slave devices on the bus				
	Uni-TE client (slave function)		Sending messages to every o maximum	levice on th	e bus (master or slave), 128 bytes				

Dimensions : page 40050/15

pages 40050/16 to 40050/19

References

Nano PLCs Nano PLCs bases

page 40050/15

Nano PLCs

Nano PLCs bases

TSX 07 01 1600

Mod	licon						18	XP	20	0					11-	in an a fer
		1	1	1	1	1	: :		÷	÷	4	1	: :	1		
	00110															

TSX 07 01 2400/TSX 07 21 1648

TSX 07 EX 1600

TSX 07 EX 2400

Extend	lable Nano I	PLC bases (d	continued)		
Number of I/O	Inputs	Relay outputs	Transistor outputs 24 V/0.5 A	Reference (1)	Weight kg
\sim 10024	0 V power supply				
10	61 <u>24</u> V	4 O	_	TSX 07 30 1028	0.300
		_	4 O unprotected, negative logic	TSX 07 30 1008	0.280
16	9 I∼ 115 V	7 0	_	TSX 07 31 1648	0.390
	91 <u></u> 24 V	7 0	_	TSX 07 31 1628	0.360
		_	7 O unprotected, negative logic	TSX 07 31 1608	0.335
24	14 I 24 V	10 O	_	TSX 07 31 2428	0.410
		_	10 O unprotected, negative logic	TSX 07 31 2408	0.380
Nano F	PLC bases (v	vith an integrated	l analogue input) (2)		
Number				Deference	Mainht
of I/O	Inputs	Relay outputs	Integrated analogue input	(1)	Weight kg
\sim 10024	0 V power supply	/			
10	6 I <u></u> 24 V	4 0	1 I x 010 V	TSX 07 32 1028	0.290

1 I x 0...10 V

24	14 I <u></u> 24 V	10 O	1 I x 010 V	TSX 07 33 2428

70

Nano PLC extensions

9 I <u>-</u> 24 V

16

These extens Number of I/O	sions can be used t Inputs	to augment extenda Relay outputs	able Nano PLC bases at mini Transistor outputs 24 V/0.5 A	mum cost (maximum 1 exte Reference (1)	nsion per base). Weight kg
<u> </u>	er supply				
16	91 <u></u> 24 V	-	7 O protected, positive logic	TSX 07 EX 1612	0.325
24	14 I <u></u> 24 V	_	10 O protected, positive logic	TSX 07 EX 2412	0.370
\sim 100240	power supply V	1			
16	9 I 24 V	70	-	TSX 07 EX 1628	0.360
24	14 I <u></u> 24 V	10 O	-	TSX 07 EX 2428	0.410

TSX 07 33 1628

Multilingual quick reference guide included as standard (English, French, German, Italian and Spanish).
 TSX 07 32/33 ••28 PLCs do not have I/O extension and/or PLC extension links or the Modbus slave link.

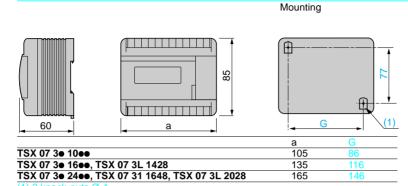
page 40050/15

0.290

0.290

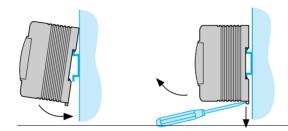
References (continued) Nano PLCs Nano PLCs bases

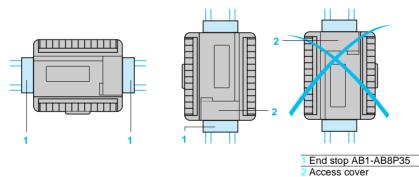
Separate parts


TSX PRG LDR

Description	Use with Length		Reference	Weight kq
Program loader with programming port connecting cable	Simplifies duplicating or updating applications (program and constants in internal RAM)	TSX PRG LDR	0.150	
Input simulator 24/~ 115 V	Nano PLC with 10 I/O	-	TSX 07 SIM 06	0.050
	Nano PLC with 16 I/O	-	TSX 07 SIM 09	0.070
	Nano PLC with 24 I/O	-	TSX 07 SIM 14	0.080
Connecting cables between Nano PLC base	I/O extension s	0.3 m	TSX CA0 003	0.015
	PLC extension	<u>50 m</u> 200 m	TSX STC 050 TSX STC 200	<u>1.710</u> 6.790
Connecting cable for Modem (DCE)	Nano PLC terminal port connection to the Modem device (with 25-way male SUB-D connector)	2,5 m	TSX PCX 1130	0.240
Terminal port cable connector	Isolation of Uni-Telway signals for distances > 10 m and < 1 km, line termination, bus drop cable	1 m	TSX P ACC 01	0.690
Description	Composition		Reference	Weight kg
Self-instruction cases (1)	1 Nano PLC (16 I/O), 1 Input simulator and 1 FTX 117		TSX SDC 07 30 117	0.950
	1 Nano PLC (16 I/O), 1 input simulator and software unde FT 210032	er DOS for	TSX SDC 07 30 DSF	0.600
	1 Nano PLC (16 I/O), 1 input simulator and software under compatible	r DOS for PC	TSX SDC 07 30 DSP	0.600

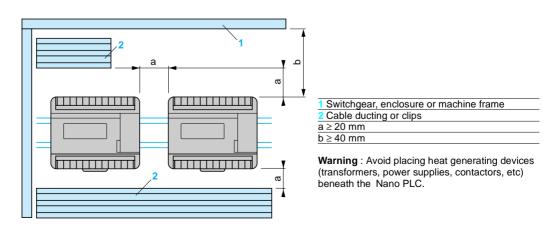
(1) Multilingual quick reference guide included as standard (english, french, german, italian and spanish).




Dimensions

Mounting

By clicking onto 35 mm - DIN rail, or by screwing onto panel using Ø M3 screws Mounting Removal

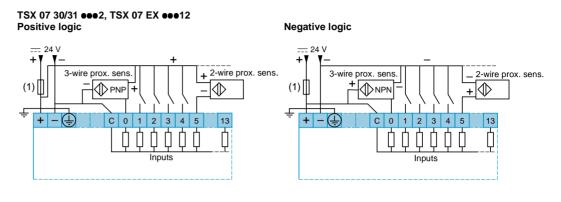


Mounting positions on vertical plane Possible mounting positions

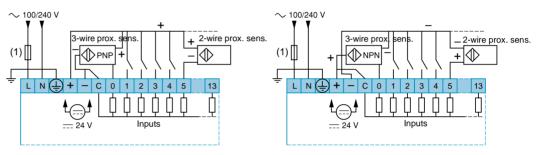
Incorrect mounting position

Installation rules

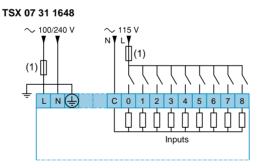
pages 40050/9 to 40050/11


pages 40050/12 to 40050/14

pages 40050/16 to 40050/19

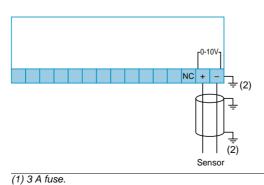

Nano PLCs bases

Power supply --- 24 V, 6, 9 or 14 inputs --- 24 V



Power supply \sim 100/240 V, 6, 8, 9, 12 or 14 inputs — 24 V

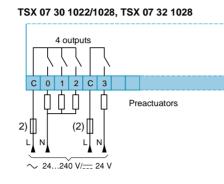
TSX 07 30/31 eee8, TSX 07 32/33 eee8, TSX 07 EX eee28, TSX 07 3Lee28 Positive logic Negative logic

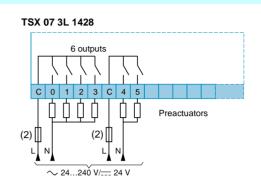


Power supply \sim 100/240 V, 9 inputs \sim 115 V

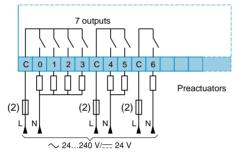
Analogue input

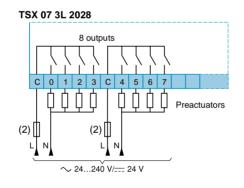
TSX 07 32 1028/33 0028

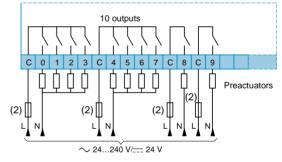

(1) S A fuse. (2) Earth connection required for non-isolated sensor.



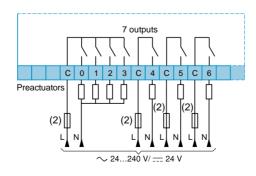
pages 40050/12 to 40050/14




Power supply — 24 V $\,$ or \sim 110...220 V (1)



TSX 07 31 1622/1628, TSX 07 33 1628, TSX 07 EX 1628

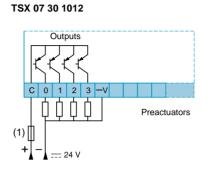


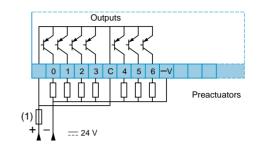
TSX 07 31 2422/2428, TSX 07 33 2428, TSX 07 EX 2428

Power supply \sim 110...220 V (1)

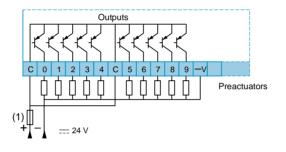
TSX 07 31 1648

pages 40050/9 to 40050/11

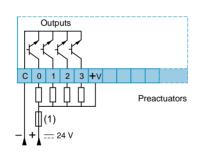

pages 40050/12 to 40050/14


Connection of <u>---</u> 24 V transistor outputs

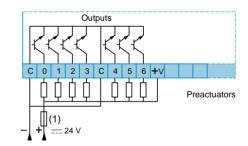
Nano PLCs Nano PLCs bases


Power supply - 24 V, positive logic transistor outputs

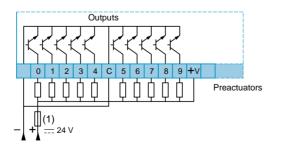
TSX 07 31 1612, TSX 07 EX 1612

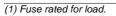


TSX 07 31 2412, TSX 07 EX 2412



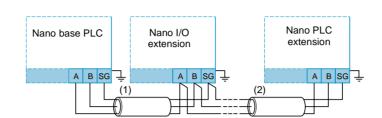
Power supply - 24 V, negative logic transistor outputs


TSX 07 30 1008



TSX 07 31 1608

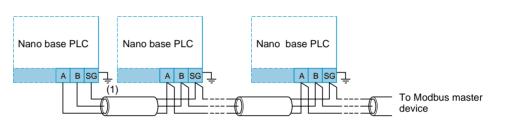
TSX 07 31 2408



pages 40050/9 to 40050/11 pages 40050/12 to 40050/14

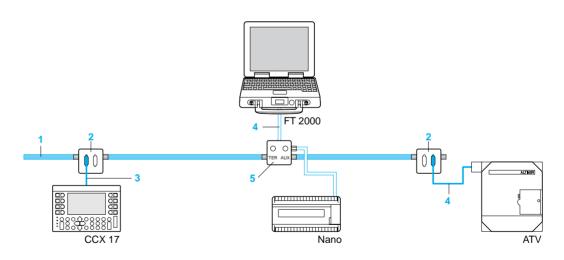
Connection of extensions Nano PLCs Connection to Modbus and Nano PLCs bases Uni-Telway buses

Connection of extensions



(1) TSX CA0 003 cable (0.3 m long) or shielded twisted pair cable.

- (2) Remote location (200 m max) of Nano PLC extensions requires either :
- TSX STC 050 cable (50 m long) or TSX STC 200 (200 m long), or .
- Shielded twisted pair cable with the following main characteristics : .
 - Mechanical characteristics : tinned copper core, 18 to 24 gauge with tinned copper shielding


- Electrical characteristics : load resistance per unit length of one wire : \leq 85 Ω /km, load resistance per unit length of shielding : \leq 12 Ω /km

Connection of Modbus bus

Connection of Uni-Telway bus

- 1 TSX CSA ••• : bus cable, double twisted shielded pair. The shielding must be taken to earth at each device.
- 2 TSX SCA 62 : passive 2-channel subscriber socket (see page 43594/5).
- 3 XBT-Z908 : connecting cable between the CCX 17 operator panel and the TSX SCA 62 subscriber socket (see page 43594/5).
- 4 TSX PCU 1030 : Uni-Telway connecting cable between the PC compatible FT 2000 terminal and the TER port of Nano PLCs or TSX P ACC 01 connectors.

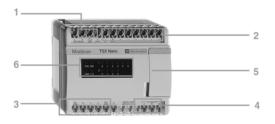
T FTX CBF 020 : Uni-Telway connecting cable between the FTX 517 terminal and the TER port of Nano PLCs or TSX P ACC 01 connectors.

5 TSX P ACC 01 : cable connector from a Nano PLC to the Uni-Telway bus via the PLC terminal port. The connecting cable (1 m long) is integrated in the cable connector. It isolates signals (over a distance > 10 m) and adapts line termination impedance. It is also used to select the terminal port (Uni-Telway master/slave or character mode).

ges 40050/9 to 40050/11 pages 40050/12 to 40050/14 Modicon Schneider Electric Telemecanique

Nano PLCs Analogue I/O extension modules

Presentation


TSX AMN analogue I/O extension modules have 3 analogue inputs and 1 analogue output which can be configured for voltage or current :

- TSX AMN 4000 : with \sim 100/240 V power supply.
- TSX AMN 4001 : with 24 V power supply.

It is possible to use up to 3 modules as an extension to the Nano PLC base. They communicate with the base PLC via exchange words.

Description

The front panels of TSX AMN analogue I/O extension modules comprise :

A mains power supply connection terminal block.
 An analogue input connection terminal block.
 An analogue output connection terminal block.
 A PLC extension connection terminal block.
 A selector switch for coding the extension number.
 A display block with 4 LEDs :

 RUN : PLC status

- ERR : internal fault
- COM : exchanges on the extension link
- I/O : external faults

Characteristics

Input characteristics

Input charact	eristics			
Type of module	Type of module		TSX AMN 4000	TSX AMN 4001
Analogue inputi	Number of channels Input range Input impedance Max. voltage without damage		3 010 V, ± 10 V, 020 mA, 4-20 mA 125 Ω in current, 100 KΩ in voltage ± 7.5 V in current, ± 30 V in voltage	
Power supply	Nominal voltage Limit voltage	v v	∼ 100240 (50/60 Hz) ∼ 85264 (50/60 Hz)	24 19.230
Conversion	Method Resolution channel 1 Resolution channel 2 Resolution channel 3 Precision		By successive approximation 11 bits (+ sign in \pm 10 V) 11 bits (+ sign in \pm 10 V) (if two channels are used), 7 bits (+ sign in \pm 10 V) 0.5% of the full scale from 0 to 60°C	7 bits (+ sign in \pm 10 V) (if three channels are used)
Isolation	Between channel and earth Between inputs Between inputs and outputs	V rms V rms	2000 Common point 1000	

Output characteristics

Type of module			TSX AMN 4000/4001				
Analogue	Number of channels		1				
output	Max. permissible voltage	v	± 30	± 30			
Comucanolon	A						
Conversion	According to standards		IEC 1131, UL 508, ANSI MC 96.1, NF C 42				
	Range		010 V or ± 10 V	020 mA	4-20 mA		
	Resolution		11 bits (+ sing in ± 10 V	11 bits	11 bits		
	Precision		1 % of 060 °C	1.5 % of 060 °C	1.5 % of 060 °C		
	Type of protection		Permanent short circuit	Permanent open circuit			
Isolation	Between channel and earth	V rms	2000				
	Between inputs and	V rms	1000	1000			
	outputs						

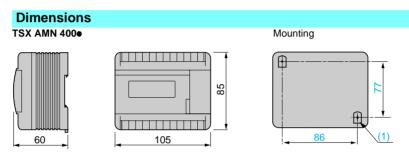
page 40055/3

40055-EN.FM/2

References, dimensions, connections

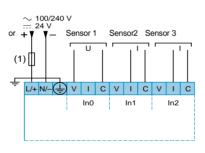
Nano PLCs

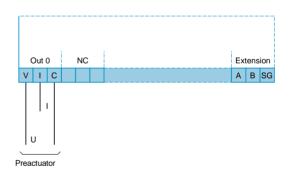
Analogue I/O extension modules



TSX AMN 400

5 (
References					
Type of I/O	Number of channels	Voltage/current ranges	S Power supply	Reference (1)	Weight kg
High level nputs 12 bits	3 channels	010 V, ± 10 V 020 mA, 4-20 mA	\sim 100/240 V	TSX AMN 4000	0.280
High level isolated output 11 bits	1 channel	010 V, ± 10 V 020 mA, 4-20 mA	24 V	TSX AMN 4001	0.270


1


(1) Product supplied with multilingual installation guide.

(1) 2 knock-outs Ø 4 Connections

Inputs

Distance between module and sensors or preactuator : 50 m max. with cable Ø 0.5 mm (conductor cross-section) and shielding connected on the module side. (1) 3 A fuse.

Output

Description, functions, characteristics

Nano PLCs Analogue I/O modules

TSX AEN and TSX ASN analogue I/O modules enable the use of an analogue input on Nano PLCs via high speed counter inputs and the use of an analogue output on Nano PLCs via solid state outputs respectively.

There are six types of I/O module :

- TSX ASN 101 : 0/10 V output range
- TSX AEN 101 : 0/10 V input range
 TSX AEN 102 : 4/20 mA input range
 TSX AEN 105 : ± 10 V input range
- TSX ASN 102 : 4/20 mA output range
- TSX ASN 105 : ± 10 V output range

Description

Analogue I/O modules are in a box format.

The front panel consists of :

- 1 A screw terminal block for connecting the ---- 24 V power supply
- 2 A lamp indicating the presence of th e --- 24 V power supply
- 3 An I/O type selector switch (positive or negative logic)
 4 A sc rew terminal for connecting the frequency input or output to the Nano PLC
- 5 Two screw terminals for connecting the sensor or analogue preactuator

Functions

Analogue I/O modules have the following functions :

• For analogue inputs

- For voltage/frequency conversion, which requires connection of the TSX AEN 10• module frequency output to the I0.0 input of the Nano PLC (--- 24 V input configured as a frequency meter at 10 kHz). • For analogue outputs
- For frequency/voltage-current conversion, which requires connection of the TSX ASN 10• module frequency input to the Q0.0 output of the Nano PLC (solid state output configured for the PWM function, with time base at 0.1 ms).

Characteristics

onaraotoriotioo					
Type of module			TSX AEN 10	TSX ASN 10	
Analogue I/O	Number of channels		1 (high level)	1 (high level)	
	Input impedance		6.6 MΩ (1) 250 Ω (2)	-	
	Load impedance		-	\leq 5 K Ω (1) \leq 250 Ω (2)	
	Max. permissible voltage without damage	V	± 16	± 12 (1) ± 0.6 (2)	
Conversion	Method of conversion		Voltage → frequency	Frequency → voltage	
Conversion	Resolution		10 bits or 12 bits	8 bits	
	Conversion time	ms	125 (10 bits), 500 (12 bits)		
	Precision	1113	± 1 % of 060 °C (3)	500	
			1 // 01 01 01 00 0 (0)		
Frequency output	Nominal voltage	v	<u> </u>	_	
	Logic		Positive or negative	-	
	Protection against short-circuits		No	-	
Frequency input	Nominal voltage	v	- = 24		
	Logic		 Positive or negative 		
			<u> </u>		
Power supply	Nominal voltage	v			
	Limit voltages	V	<u> </u>		
	Power drawn	w	2.5		
	Inrush current	Α	10 max		
Isolation	Detween newer symply and some	V mar			
isolation	Between power supply and earth		1500/50-60 Hz	1500/50-60 Hz	
	Between the input or output and earth		1500/50-60 Hz	1500/50-60 Hz	
	Between the input and frequency output	-	500/50-60 Hz	-	
	Between the frequency input and the output	V rms	-	500/50-60 Hz	

(1) TSX AoN 101 (0...10 V) and TSX AoN 105 (- 10...+ 10 V) modules.

(2) TSX A•N 102 (4...20 mA) module.

(3) Full scale.

page 40054/3

Nano PLCs Analogue I/O modules

References

TSX AEN 100

		Current	4-20 mA	TSX AEN 102	0.120
Analogue outp	ut modules (3)				
Туре	Number of	Nature	Output range	Reference	Weightk
	channels			(2)	g
High level	1 channel	Voltage	0-10 V	TSX ASN 101	0.120
8 bits		0	± 10 V	TSX ASN 105	0.120
		Current	4-20 mA	TSX ASN 102	0.120

Input range

0-10 V

± 10 V

Reference

TSX AEN 101

TSX AEN 105

(2)

Weight

kg

0.120

0.120

TSX ASN 100

(1) The Nano PLC must have --- 24 V inputs.

Analogue input modules (1)

Number of

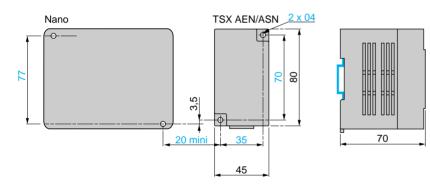
channels

1 channel

Nature

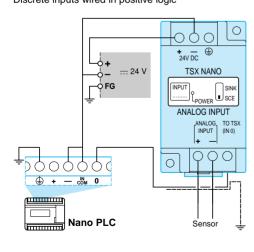
Voltage

Туре

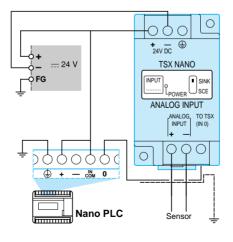

High level

10/12 bits

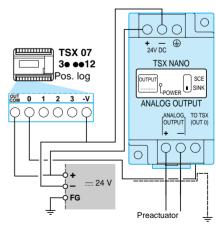
(2) Installation guide included as standard (English, French, German, Italian and Spanish).


(3) The Nano PLC must have - 24 V transistor outputs.

Dimensions, mounting TSX AEN 10•/ASN 10• module



Connections


TSX AEN 10• input module Discrete inputs wired in positive logic

Discrete inputs wired in negative logic

TSX ASN 10• output module Connection example with positive logic output

page 40054/2

General

PL7 language on Nano PLCs enables the programming of simple sequential applications such as those requiring numerical processing or specific functions such as schedule blocks, fast counting, etc. This programming is in List language (Instruction List) or in Ladder language.

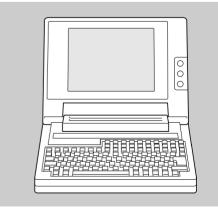
These two languages are reversible provided a few simple programming rules are respected : any Nano PLC program which has been written in Instruction List (on an FTX 117 terminal or using PL7-07 software) can be read and modified in Ladder language (with PL7-07 software on an FT 2100 terminal or PC compatible) or vice versa.

List language

000 LD %I0.0 001 AND (%I0.1 002 ANDN %TM0.Q 003 OR %Q0.1 004) 005 ST %Q.1 006 IN %TMO 007	%l0.1 %TM0.Q %Q0.1 %Q.1	 PL7 List language comprises a list of instructions from different families for direct translation into : Instructions on Ladder diagram bits, logic diagrams or Boolean equations Instructions on control system function blocks -(timers, counters, etc)
		Grafcet instructions
		Instructions on words for numerical processing
		 Instructions on the program for structuring programs

Ladder language

PL7 Ladder language is entirely graphic and thus offers the advantage of similarity with electromagnetic relay control systems. Its basic symbols are complemented by graphic elements allowing it to carry out control system functions, numerical processing and structuring of Nano PLC programs.


Ladder language provides additional assistance when debugging applications through the real-time display of graphic symbols (for example, the highlighting of closed contacts).

Programming terminals

The development, transfer, debugging and archiving of programs for Nano PLCs can be carried out equally well on either of the two types of terminal :

FTX 117

FT2100 or PC compatible

Dedicated pocket terminal, for programming in List language with operation in offline or online mode.

Standardised design office and workshop terminal, with PL7-07 software for programming in Ladder and/or List language (Instruction List)

ade 40052/3

page 40053/3

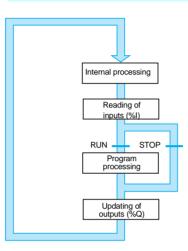
Characteristics

Nano PLCs

PL7 language

Instructions	Combined List instructions	Grafcet List instructions #	
	 LD, LDN, LDR, LDF : read the state of a bit (direct, inverse, rising and falling edge) ST, STN, S, R : write an output (direct, inverse, set, reset) AND, ANDN, ANDR, ANDF : logic AND with a bit (direct, inverse, rising and falling edge) OR, ORN, ORR, ORF : logic OR with a bit (direct, inverse, rising and falling edge) LD (, AND (, OR(,) : open and close brackets (8 possible levels) XOR, XORN, XORR, XORF : exclusive OR with a bit MPS, MRD, MPP : buffer memory management for divergence towards output bits N : negation List comments and title with PL7-07 software Title : 122 characters before each instruction LD, LDR, LDF Comments : 4 lines of 122 characters before each instruction LD, LDN, LDR, LDF Possibility of associating a comment of 122 characters with each instruction 	 -*-i : step (1 ≤ i ≤ 62) =*=i : initial step (1 ≤ i ≤ 62) #i : activate step i, after deactivation of current step #: deactivate current step #Di : deactivate step i after another step =*=POST : start post-processing %Xi : bit associated with step i Instructions on program MCS, MCR : master relay END, ENDC, ENDCN : end of program (conditional or unconditional) JMP, JMPC, JMPCN : jump to a label % L (conditional or unconditional) SRn : call subroutine n (0 ≤ n ≤ 15) RET : end of subroutine NOP : non-operative instruction 	
	Ladder rungs	Ladder language graphic symbols	
	 10 contacts of 7 lines with 1 output per line Title : 122 characters per rung Comments : 4 lines of 122 characters 	 Normally open, normally closed and on edge contact Direct, inverse, SET and RESET coils Program jump, subroutine call 	
	Standard function blocks	Specific function blocks	
	 32 timers :%TMi (0 ≤ i ≤ 31) 0 to 9999 (word) 16 up/down counters :%Ci (0 ≤ i ≤ 15) 0 to 9999 (word) 4 16-bit LIFO or FIFO registers :%Ri (0 ≤ i ≤ 3) 4 drum controllers :%DRi (0 ≤ i ≤ 3) 8 steps Real-time clock :%RTCi (0 ≤ i ≤ 15) month, day, hour, minute, with TSX Nano 16 and 24 I/O Numerical instructions 	 Transmission/reception of message of 64 words maximum (internal or constant) :EXCH Exchange control : %MSG available output, fault -output 8 shift bit registers :%SBRi (0 ≤ i ≤ 7), shift one state to the left or right (max. 16 steps). 8 step counter blocks :%SCi (0 ≤ i ≤ 7), move forward or back one step (max. 256 steps) 1 fast counter (max.10 KHz), frequency meter (mat 10 KHz), up/down counter (max. 1 KHz) : %FC with the state of t	
	 Assignment in word, indexed word, bit strings word tables : := Arithmetic : +, -, x, /, REM, SQRT Logic : AND, OR, XOR, NOT, INC, DEC Shift operation : SHL, SHR, ROL, ROR (logic and rotate) Conversion : BTI, ITB (BCD <-> Binary) Comparison :>, <, <=, >=, =, <> 	 2 high speed outputs Pulse width modulated output :%PWM Pulse output :%PLS Real-time display of Grafcet steps used Symbol table management Porting of Nano applications to Micro (List or Ladder Steps) 	
Specific functions	 1 input for PLC RUN/STOP command 1 PLC status (security) output : PLC error 6 latching inputs : 100µs minimum 	 Real-time display of Grafcet steps used Symbol table management Porting of Nano applications to Micro (List or Ladded) 	
Addressable objects	Bit objects	Word objects	
	 % I/Qx.y : 28 inputs and 20 outputs max. % Mi : 128 internal bits % Si : 128 system bits % Xi : 62 Grafcet steps % ei.j : function block bits % ei:Xk : bits extracted from internal words, system words, constant words, input and output words 	 % MWi : 256 internal words % KWi: 64 constant words % SWi : 128 system words % IWi.j : 2 input words per PLC (exchange words finter-PLC communication) % QWi.j : 2 output words per PLC (exchange word for inter-PLC communication) 	
	Bit string and word table objects		
	• %•i:L : bit strings (I/O, internal, system and Grafcet bits)	 %eWi:L : word tables (internal, constant and syste words) 	

References : page 40053/3

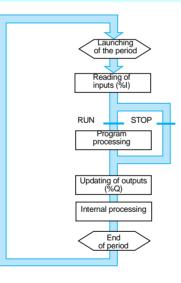


Software structure

There are two types of scan execution :

- Normal cyclic execution. This is the default setting.
- Periodic execution. This type of execution and the period of time are defined by the user during configuration.

Normal (cyclic) execution



At the end of each scan the PLC system relaunches execution of a new scan. The execution time of each scan, which must not exceed 150 ms, is monitored by a software watchdog.

If this value is exceeded, a fault appears causing :

- Immediate stop of the scan (STOP)
 Display on the PLC front panel (RUN light flashing)
- Memorisation in a system bit (%S11)
- If an output is configured for the SECURITY function, it is reset to 0

Periodic execution

The execution of a scan is relaunched at the end of each period. The scan execution time must be less than that of the period defined (2 to 150 ms). If it exceeds this, it is memorised in a system bit (%S19) which should be tested and reset to 0 by the user (via the program or the terminal).

A software watchdog of 150 ms monitors the scan time. If it exceeds 150 ms, an execution fault is displayed (see normal execution).

PLC scan

- In both types of execution, the system carries out :
- Internal processing
 - The system implicitly
 - monitors and controls the PLC
 - processes requests from the terminal
- Reading of inputs

The state of each preactuator connected to the inputs (%I) is memorised. It is this memorised state which is taken into account during program processing.

Program processing

The program is executed in the order in which the user has written it (except for program or subroutine jump instructions).

• Updating of outputs

The outputs (%Q) are activated or deactivated depending on the state (0 or 1) defined by the program.

40052-EN.FM/4

bage 40052/3

page 40053/3

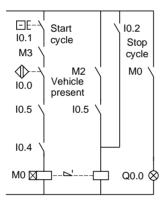
Nano PLCs PL7 language

Instruction List language

Program structure

A program in PL7 language comprises a list of instructions (up to 1000 instructions) from the following different families :

- Bit instructions : for example, read input n° 3 :
- Function block instructions : for example, start timer n° 0 :
- Word instructions : for example, an addition
- Program instructions : for example, call subroutine n° 5 : • Grafcet instructions : for example, step n° 8 :
- Each program line has an automatically generated line number,

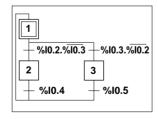

an instruction code and a bit or word operand. Example of a program line :

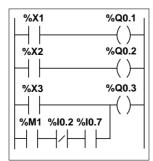
LD %10.3 IN %TM0 [%MW10 := %MW50 + 100] SR5 -*-8

003 AND %M27 operand instruction code

line number

Simple application programming (Boolean processing)

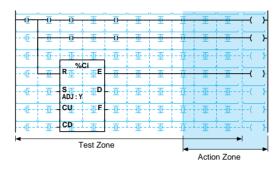



Application programming with Grafcet

The translation of a Ladder diagram into an Instruction List program is immediate.

000 005	LD AND AND AND S LD AND	%10.1 %10.0 %M3 %10.5 %10.4 %M0 %M2 %10.5	Start cycle pushbutton Vehicle present proximity sensor Real-time clock authorisation bit High roller limit switch Rear gantry limit switch Memo start cycle
010	OR R LD	%I0.2 %M0 %M0	Stop cycle pushbutton
010	ST	%Q0.0	Scan indicator

%I0.6 %S22 -(s) %M0 (%S21 %10.6 (s) P


A Grafcet program is divided into 3 parts, each with a specific role.

A GIG	aicer pio(giannis uiv	ided into 5 parts, each with a specific role.
000 001 002 003 004	LDN S ST LDR S	%I0.6 %S22 %M0 %I0.6 %S21	 Pre-processing This is made up of a list of instructions for processing : Power returns Failures Changes in mode Input logic It ends with the first =*= or -*instruction encountered
005 006 007 008 009 010 011 012 013 014 015 016 017	=*= LD ANDN # LD ANDN # -*- LD # -*- LD	1 %10.2 %10.3 2 %10.3 %10.2 3 2 %10.4 1 03 %10.5 1	Sequential processing This is made up of the chart (-instructions representing the chart) : • Steps • Transitions • Conditions It ends with execution of the =*= POS instruction.
018 019 020 021 022 023 024 025 026 027 028	=*= LD ST LD ST LD OR (ANDN AND) ST	POST %X1 %Q0.1 %X2 %Q0.2 %X3 %M1 %I0.2 %I0.7 %Q0.3	 Post-processing This is made up of a list of instructions for processing : Instructions from the sequential processing part to control the outputs Safety interlocks specific to the outputs

Nano PLCs PL7 language

Ladder language Program structure

A program in Ladder language consists of a series of rungs. Each rung is labelled and can be :

- Described by a title of 122 characters maximum.
- Completed by a comment of 4 lines of 122 characters maximum

A rung consists of 7 lines of 11 columns with a maximum of 10 contacts and one coil per line.

The rung is divided into two different zones :

- Test Zone for receiving graphic elements; contacts, -comparison blocks and function blocks (standard or specific).
- Action Zone for receiving coils (in column 11) and operation blocks (from column 8 onwards).

Within a rung, coils or operation blocks must be connected by at least one vertical link in order to form a single group.

Graphic elements

The graphic elements which make up a rung are :

- Contacts
- Coils

N %TMi

0

Operation blocks

%MW0 := %MW10 + 100

Comparison blocks

• Connecting elements

Program structure elements

MW20>25

 \rightarrow SRn \rightarrow %Ln

- -()- -(/)- -(s)- -(R)-
- Standard and specific function blocks

These test the state of the bit associated with them. 4 types are available : normally open, normally closed, rising edge (P) and falling edge (N).

These control the output bits or internal bits. 4 types are available : direct, inverse, set and reset.

These correspond to the control system functions. There are 10 of them (see next page). A single function block is authorised for each rung.

These enable numerical processing : assignment of words, arithmetic, logic, conversion, logic and rotate shift -operations, incrementation/decrementation. They call up the List -language numerical instructions.

These enable comparison of two words of any type (>, >=, <, <=, =, <>).

These call up subroutine n and the program jump for rung n.

These elements, called horizontal Boolean logic and -vertical Boolean logic are used to connect all the graphic elements described above.

Reversibility

The reversibility of List and Ladder languages enables the display of programs in whichever language is desired, regardless of the language used in their creation. For example, an application developed in the design office in Ladder language can be read, and even modified, in List language, and vice versa.

In order to be reversible, an application written in List language must respect a few rules of reversibility :

- Certain instructions such as XOR, JMPCN, etc must not be used.
- Function blocks such as BLK, OUT_BLK and END_BLK, etc must be used.

Each part of a non reversible program is represented in List language, the rest of the reversible program is presented in the form of rungs.

age 40052/3

page 40053/3

Nano PLCs PL7 language Standard function blocks

Description	Number	Chart	Function	control system functions to be integrated	Function	plication programs.
tandard function blo						
mer ms minimum 999 min maximum	32	_ IN Q _	E TYP	TON on-delay timer TOF off-delay timer	C %Ti,P %Ti,V ADJ	Timer output Preset value word 0 to 9999 Current value word Adjustment permitted (Y) or prohibited (N
		TB : 1 min ADJ : Y	ТВ	Time base : 1 ms (TMO & TM1), 10 ms/100 ms/1 s or 1 min		
p/down counter	16	%Ci	R		E	Overflow output bit (0 to 9999)
		R E S D ADJ:Y CU F	P CU CD	Increment on edge input	Ci,D F %Ci,P	Preset done output bit Overflow output bit (9999 to 0) Preset value word 0 to 9999
					%Ci,V	Current value word
FO/FIFO register	4	%Ri	R		ADJ %Ri,I	Adjustment permitted (Y) or prohibited (N Register access word
i e,i ii e regiotei		-R E-	I I	Storage on edge input	%Ri,O	Register output word
		I F TYP:FIFO O	O TYP		Ri,E Ri,F	Register empty output bit Register full output bit
rum controller	4	%DRi	R		%DRi.S	Number of current step
		- K F - - U LEN : 0	U LEN		F Command bits	Last bit not currently defined 16 %Qi or %Mi bits
Specific function b	olocks					
Vidth modulated	1		IN	Pulse input	%PWM.P	Period preset ≤ 32767
output			ТВ	Time base 0.1 ms, 10 ms, 1 s	%PWM.R %Q0.0	Period ratio 0 to 100% Width modulated output
Pulse output	1	- IN Q -	IN R	Pulse input Reset number of pulses to 0 input	%PLS.P %PLS.N Q	Period preset \leq 32767 Pulse number \leq 32767 Current pulse output bit
		RD TB:1S ADJ:N	ТВ	Time base 0.1 ms, 10 ms, 1 s	D %Q0.0 ADJ	Done pulse output bit Pulse output Adjustment permitted (Y) or prohibited (
ast up/down counte	r 1	%FC	IN	Enable input	%FC.P	Up/down preset value ≤ 65535
requency meter		-IN F-	S %FC.S0	Preset input Threshold value S0 ≤ 65535	%FC.V F	Current value Overflow output bit
		S THO_ TYP:?	%FC.S1	Threshold value S1 \leq 65535	, %Q0.1	High-speed output 0
		TH1_			%Q0.2 TH0 TH1	High-speed output 1 Current output bit value ≥ threshold TH Current output bit value ≥ threshold TH
lessage ansmission/reception	_ 1	EXCH	EXCHANGE	Transmission or reception (1) via (Uni-Telway or ASCII) terminal port or Modbus link	%MWi:L	Internal word table $L \le 64$ Constant word table $L \le 64$
Exchange control	-	_R ^{%MSG} D_	R	Communication initialisation input	E D	Communication error output bit Available link output bit
Bit shift register	8		R	Reset 16 %SBRi.j bits to 0	%SBRi.j	Bits 0 to 15 of register %SBRi
in shin register	0	_R _CU	CU CD	Shift input left Shift input right	MODRI.J	
		_ CD				
tep counter	8	R _	R CU	Reset %SCi.j bits to 0 Increment input one step	%SCi.j	Bits 0 to 255 of step counter %SCi
		_CU _ _CD	CD	Decrement input one step		
chedule block real-time clock)	16	RTC:i	Q :	Assignment of output %Mi or %Qj.k activated by schedule block	DD-MMM	Validation start and end date DD : day 1 to 31
			MTWTFSS hh:mm	Activation days of the week Hours (0 to 23) and minutes (0 to 59) of start and end of activation		MMM : month JanDec.
		(1) This fun	ction is specific i	to PL7-07 \geq V3, compatible with Nano PLC	Cs ≥version 2.	

Schneider Electric

Modicon Telemecanique

Nano PLCs FTX 117 terminal

Presentation

The FTX 117 dedicated terminal is the Instruction list language programming tool for Nano PLCs. It is very easy to use due to its back-lit screen with 4 lines of 16 characters and 35-key keypad for contextual entry.

The FTX 117 terminal can be powered in two different ways :

- \bullet By a \sim 100 to 120 V mains supply or \sim 200 to 240 V supply via a T FTX ADC 1 \bullet adaptor, in which case the terminal must be used in offline mode.
- By the Nano PLC, in which case the priority operating mode of the terminal is online mode.

Description

The FTX 117 terminal front panel comprises :

- 1 Exclusive access to connectors for connection to : - T FTX ADC 1 \bullet \sim / \pm mains adaptor
- T FTX CB1 0•0 cable for connection to the Nano PLC 2 A back-lit screen with 4 lines of 16 alphanumeric characters
- 3 An operating mode selector switch :
- FTX : offline mode operation
- TSX : online mode operation

- 4 A 35-key keypad 5 A slot for PCMCIA type 1 memory card 5
- Magnets fitted on the back of the terminal to keep it in a 6 vertical position on a metal support
- 7 A carrying strap

Functions

1

П

۵

TSX: RUN APP: Exec 1 TSX 07 2B-24 IStp02Ini03Rtc	In order to offer rapid operation, all the necessary functions for writing, debugging, transferring and archiving programs are accessible at any time as there are 5 editors which display the menus. The 5 editors are as follows : 1 TSX : shows the menus for : - displaying the RUN/STOP status of the PLC
000 LD %I0.1 001 AND %I0.22 002 ST %Q0.1	 running or stopping the PLC initialising the PLC memory displaying and entering the real-time clock parameters setting the PLC integral clock 2 Prg : program editor designed for :
003 LD %MO	 reading, writing and modifying the program using duplication, search, replacement functions, etc partially or completely clearing the application memory
%I0.5 □∎□□□□□□□ Err=0f 3 f	 debugging the program transferring and archiving applications program diagnostics using a consistency check
%Q0.0 0000000	 3 Dat : data editor for : accessing the set of variables in real-time display modifying or forcing authorised variables converting word objects into hexadecimal, ASCII or
%C4 %C4.P: 99994	decimal code - entering and memorising data tables
Adjust: •0 1App ⁰ 2Blk ⁰ 3In •	 4 Cnf : configuration editor (when default configuration is not suitable) for : entering application parameters entering I/O and function block parameters entering constant words
FTX117 - PL7-07 App= '' 5 FTX	 FTX : terminal editor for entering terminal parameters (language, sound, keyboard, screen saver)

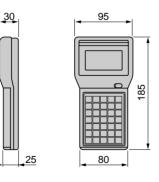
Modicon Telemecanique

Þ

Functions (continued), references, dimensions

Nano PLCs FTX 117 terminal

Development, debugging and adjustment tools	 The various editors offered by the FTX 117 terminal make it easy to use for all stages of application development : In the development phase for the configuration steps of PLC objects, real-time clocks, entering the program, diagnostics and back-up (to Flash memory or to PCMCIA memory card) In the adjustment and debugging phase for transferring the application to the PLC, starting-up, debugging, adjusting parameters and archiving the application to PLC EEPROM memory and/or to PCMCIA memory card
Easy touse, user-friendly tool	 The FTX 117 terminal is just as suited to use in the design office in offline mode as in the workshop connected to the TSX 07 PLC. Ease of use is mainly due to : A back-lit screen with 4 lines of character A 35-key keypad comprising 3 zones represented by 3 colours : operating mode zone (access to editors and functions) in light blue instruction entry zone in dark blue with dual marked keys for contextual access hexadecimal keypad zone in grey (0 to 9 and A to F) with contextual access to program structuring instructions Its small size (185 x 95 x 30 mm) and magnetic back


T FTX REM 3216

FTX 117 terminals	(with 4 line ba	ack-lit LCD screen)		
Use	Manual TLX DM 07 117E	Cable for connection to Nano PLC : T FTX CB1 020	Reference (1)	Weight kg
Programming/	Not supplied	Not supplied	T FTX 117 0	0.300
adjustment of Nano PLCs (2)		Supplied	T FTX 117 071	0.400
. ,	Supplied	Supplied	T FTX 117 071E	0.665
Separate parts				
Description	Length	Use	Reference	Weight kg
\sim / \pm adaptors for	-	\sim 110/120 V mains adaptor	T FTX ADC 11	0.260
FTX 117 terminal		\sim 200/240 V mains adaptor	T FTX ADC 12	0.260
Connecting cables	2 m	FTX 117<-> Nano PLC	T FTX CB1 020	0.100
j	5 m	FTX 117<-> Nano PLC	T FTX CB1 050	0.190
PCMCIA type 1	_	EEPROM 32 K words	T FTX REM 3216	0.025
memory cards		Protected RAM 32 K words	T FTX RSM 3216	0.030
		Protected RAM 128 K words	T FTX RSM 12816	0.030
Battery	-	For PCMCIA RAM type memory card	TSX BAT M01	0.010

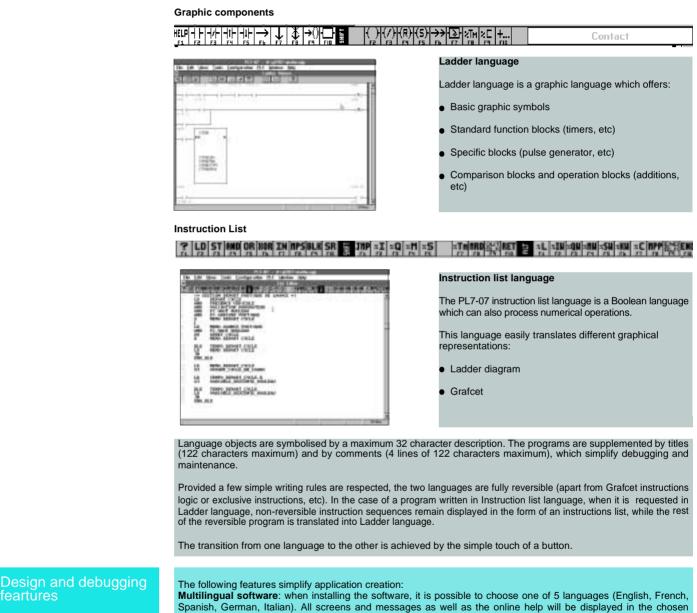
Dimensions

T FTX 117 0000

References

(1) The letter *E* at the end of a reference indicates that the product includes documentation in English.
 (2) FTX 117 Adjust terminal, see page 43580/2

page 40051/2


Nano PLCs PL7-07 software

Presentation

PL7-07 software offers fully reversible programming in Ladder language and in Instruction list language on PC compatibles (using DOS operating system, compatible with Windows 95/Windows NT). This software, which uses a Windows type user interface, simplifies the task of the automation engineers by its optimized graphic entry, editing functions and high-performance online help.

Graphic entry and display

When creating programs in Ladder language or in Instruction list language, the software displays the palettes showing the set of graphic components or of Boolean instructions, depending on the user context.

Inguage. Entry assistance: contextual graphic palettes, the structure of editors and menus, and a Windows-type user interface

ensure that PL7-07 programs are easy to write and modify. **Programming in RUN** (in Instruction list language only): changing the PL7 language object addresses in run mode allows debugging and on-site changes when controlled applications cannot be stopped. In addition, in Instruction list language, program instructions can be modified, except those instructions which modify the program structure. **Debugging and adjustment:** display and modification in real time of the status of bit objects and the value of word

Debugging and adjustment: display and modification in real time of the status of bit objects and the value of word objects, forcing of input/output, creation of data tables.

Documentation: allows the user to create and update a complete application file (general information, symbol tables, configuration, program, cross-references, etc) with information sequencing and layout facilities.

page 40053/3

References

PL7-07 software packs under DOS (Windows 95 and Windows NT compatible)

Software packs designed for PC compatibles (with a 386 microprocessor minimum, 4 M bytes of RAM memory and DOS 3.3 operating system) for programming and debugging Nano PLCs in PL7 language.

Description	Support	Composition	Reference	Weight kg
DOS software packs Reversible instruction List/Ladder language	Compatible PC	1 CD-Rom, 1 TSX PCU 1031 cable, 1 multilingual technical documentation on CD-ROM	TLX CD PL7 07P 40M	0.440
	FTX 517 terminals	1 CD-Rom, 1 T FTX CB F 020 cable, 1 multilingual technical documentation on CD-ROM	TLX CD PL7 07F 40M	0.440
Update software for TLX L PL7 07● 30●	Compatible PC, FTX 517 terminal	1 CD-Rom, 1 multilingual technical documentation on CD-ROM	TLX U PL7 07 40M	0,310

TLX L PL7 07• 40M

Spare parts Description	Length	Use	Reference	Weight kg
Connecting cables	2.5 m	Connection between Nano PLC and FT2100/PC compatible (9-way SUB-D type connector)	TSX PCU 1031	0.140
	2 m	Connection between Nano PLC and FTX 517 (26-way SUB-D type connector)	T FTX CB F 020	0.120

page 40053/2

